Effect of pore geometry on Gassmann fluid substitution
نویسندگان
چکیده
Although there is no assumption of pore geometry in derivation of Gassmann’s equation, the pore geometry is in close relation with hygroscopic water content and pore fluid communication between the micropores and the macropores. The hygroscopic water content in common reservoir rocks is small, and its effect on elastic properties is ignored in the Gassmann theory. However, the volume of hygroscopic water can be significant in shaly rocks or rocks made of fine particles; therefore, its effect on the elastic properties may be important. If the pore fluids in microspores cannot reach pressure equilibrium with the macropore system, assumption of the Gassmann theory is violated. Therefore, due to pore structure complexity, there may be a significant part of the pore fluids that do not satisfy the assumption of the Gassmann theory. We recommend that this part of pore fluids be accounted for within the solid rock frame and effective porosity be used in Gassmann’s equation for fluid substitution. Integrated study of ultrasonic laboratory measurement data, petrographic data, mercury injection capillary pressure data, and nuclear magnetic resonance T2 data confirms rationality of using effective porosity for Gassmann fluid substitution. The effective porosity for Gassmann’s equation should be frequency dependent. Knowing the pore geometry, if an empirical correlation between frequency and the threshold pore-throat radius or nuclear magnetic resonance T2 could be set up, Gassmann’s equation can be applicable to data measured at different frequencies. Without information of the pore geometry, the irreducible water saturation can be used to estimate the effective porosity.
منابع مشابه
A Tutorial on Gassmann Fluid Substitution: Formulation, Algorithm and Matlab Code
Fluid substitution is an important part of the seismic rock physics analysis (e.g., AVO, 4D analysis), which provides a tool for fluid identification and quantification in reservoir. This is commonly performed using Gassmann’s equation (Gassmann, 1951). Many authors (Batzle and Wang, 1992; Berryman, 1999; Wang, 2001; Smith et al., 2003; Russell et al., 2003; Han and Batzle, 2004) have discussed...
متن کاملIncorporating pore geometry and fluid pressure communication into modeling the elastic behavior of porous rocks
Inclusion-based formulations allow an explicit description of pore geometry by viewing porous rocks as a solid matrix with embedded inclusions representing individual pores. The assumption commonly used in these formulations that there is no fluid pressure communication between pores is reasonable for liquid-filled rocks measured at high frequencies; however, complete fluid pressure communicati...
متن کاملFinite element modelling of the effective elastic properties of partially saturated rocks
Simulation of effective physical properties from microtomographic 3D images of porous structures allows one to relate properties of rocks directly to their microstructure. A static FEM code has been previously used to estimate effective elastic properties of fully saturated monomineralic (quartz) rock under wet and dry conditions. We use the code to calculate elastic properties under partially ...
متن کاملDeriving Biot-Gassmann relationship by inclusion-based method
The quasi-static theory of poroelasticity presented by Biot and Gassmann provides a relationship between the drained and undrained elastic constants of an isotropic fluid-saturated porous material in terms of the porosity of the material, bulk modulus of the solid grains, and bulk modulus of the pore fluid. We have developed an alternative approach to derive the Biot-Gassmann (BG) relationship ...
متن کاملSensitivity Analysis of the Effect of Pore Structure and Geometry on Petrophysical and Electrical Properties of Tight Media: Random Network Modeling
Several methodologies published in the literature can be used to construct realistic pore networks for simple rocks, whereas in complex pore geometry formations, as formed in tight reservoirs, such a construction still remains a challenge. A basic understanding of pore structure and topology is essential to overcome the challenges associated with the pore scale modeling of tight porous media. A...
متن کامل